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INTRODUCTION

The analysis of small-area health data is the focus of
spatial epidemiology. Spatial epidemiology can be

thought of broadly as the analysis of health outcomes
which are geo-referenced, i.e., any set of health events
that have associated with them a location (either an
address or an area within which the event took place)
can fall under this category. Hierarchical modeling of
such disease data is closely related to conventional
multi-level modeling, but has some special features
related to the spatial referencing of outcomes. In the
following there will be an emphasis on hierarchical
modeling and its toolkit. Statistical methods employed
in the analysis of small-area heath data are diverse
in their range and besides basic exploratory and
descriptive methodology common to many subject
areas, there is a need to employ particular spatial
statistical methods which are designed for such data.
The basic characteristic of data encountered in this
application area is its discrete nature, whether in the
form of spatial locations of cases of disease, or counts
of disease within defined geographical regions. Hence,
methods developed for continuous spatial processes,
such as Kriging, are not directly applicable or only
approximately valid.
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Often geographical hypotheses of interest in
public health (PH) focus on whether the residential
address of cases of disease yields insight into etiology
of the disease or, in a PH application, whether adverse
environmental health hazards exist locally within a
region (as exemplified by local increases in disease
risk). For example, in a study of the relationship
between malaria endemicity and diabetes in Sardinia a
strong negative relationship was found (Refs 1 and 2,
ch. 9). This relation had a spatial expression, and the
geographical distribution of malaria was important in
generating explanatory models for the relation. In PH
practice, it is of considerable importance to be able to
assess whether localized areas which have larger than
expected numbers of cases of disease are related to any
underlying environmental cause. Here spatial evidence
of a link between cases and a source is fundamental
in the analysis. Evidence such as a decline in risk
with distance from the putative source of hazard or
elevation of risk in a preferred direction is important
in this regard.

SOME GENERAL SPATIAL
EPIDEMIOLOGICAL ISSUES
Before considering the study of the spatial distribution
of disease, there are some fundamental epidemiologi-
cal ideas that should be considered.

Relative Risk
Within any geographical area the local density of cases
of disease can be studied. We often want to examine
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this as it gives information about local variations in
disease. If we have census tracts then the count of cases
of a particular disease could be the data of interest.
These crude counts of disease cannot be used on their
own as the density of cases will be affected by the
variation in the population of the area. This is true
whether we observe case addresses (the residential
address of a disease case) or the aggregated count of
cases within small areas.

Hence, underlying the disease incidence is the
variation in the population ‘at risk’ of the disease. This
background population will vary in its composition
(age, gender, susceptibility groups) and in its density
with spatial location. Hence, this variation should be
accounted for in any analysis of the disease occur-
rence. Clearly, if areas of high susceptibility (with frail
population groups) coincide with areas of high dis-
ease occurrence then there is likely to be less interest
in these areas (in terms of adverse disease presence)
than areas where there is high disease occurrence and
low number of susceptibles. Local occurrence of dis-
ease (counting of cases within areas) within short time
spans (e.g., individual months or years) is termed inci-
dence. Longer term accumulation of disease cases is
often termed prevalence. Here the term incidence is
used throughout. In general prevalence can be ana-
lyzed as for incidence.

To simplify discussion, initially, we will assume
that we have a small administrative area (such as a
census tract, postcode, zip code, county etc.) within
which we observe the disease incidence. Often we
want to compare the observed count of disease with
what would have arisen from the underlying popula-
tion. This will tell us if there is any excess disease risk
in the local area. Let us assume there are i= 1, . . . ., p
tracts or small areas in a study area. Often a ratio of
the observed count yi in the ith tract to the expected
count ei derived from the background population is
used to examine excess risk: the relative risk of a
disease within the i th area can be estimated by yi

ei
.

This ratio represents the relative risk compared to
that which the local population suggests should be
seen in the area. Usually the count yi will be available
from government PH data sources and the expected
count (or rate) is usually computed from known rates
for the disease in population subgroups (broken by
age and gender). This is known as standardization.
The calculation of expected rates can be very impor-
tant and different methods of calculation could lead
to different conclusions about disease risk. Note that
this relative risk definition implies a multiplicative
model for risk. This is a common assumption in
epidemiology.

Standardized Mortality/Morbidity/
Incidence Ratio (SMR or SIR)
The above relative risk ratio is commonly computed
for certain types of data. The most common is where
incident cases are involved and is called the standard-
ized incidence ratio (SIR). Sometimes live cases are
described by the term morbidity and so standardized
mortality ratio (SMR) is sometimes used. This can be
confusing as when deaths from a disease are recorded
(mortality) the same acronym is applied (SMR). Of
course, different expected rate calculations (denomi-
nators) would usually be used depending on whether
incidence or mortality was to be considered.

Standardization
Expected rates in the small areas or tracts {ei} are
calculated (estimated) from the local population
structure. Usually an external (reference) standard
population rate will be known and applied to the local
population. This population is used as a guide to what
should be present in terms of incidence of disease.
For discussion of this issue, see Ref 3 For example,
suppose that the national US rate for prostate cancer
(PrCA) is to be used to standardize the rates in South
Carolina counties. The rate for different population
groups must be known. Hence we must know the rate
for each age × gender group nationally and we also
must know the population in these groups locally.
Define the US rate for PrCA in the kth age group and
jth gender group as ekj.. Define the population in these
groups in the ith area as pkji.. Hence the expected rate
in the ith area will be simply:

ei =
∑

j

∑
k

ekjpkji

That is, the numbers in each tract in different
age × sex groups are multiplied with known rates
for the disease for equivalent groups in a standard
population. The standard population may be the
national population (as above) or even the study
region population. The study region population may
be the most relevant if we want to study relative spatial
differences across a study region. Also note that other
standardizations could be used where covariates are
used to standardize the rates.

The standardized ratio of either incidence, mor-
tality, or morbidity is the relative risk ratio computed
with standardized expected rates, as specified above:

SIRi =
yi

ei

Figure 1 displays a SMR map for 26 census tracts
in Falkirk central Scotland. The SMR map is often
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Central Falkirk: by SMR

1.26 – 2.04 (6)
1.06 – 1.26 (3)
0.8 – 1.06 (6)
0.61 – 0.8 (5)
0.3 – 0.61 (6)

FIGURE 1 | Central Scotland: 26 census enumeration districts (EDs) in the center of the city of Falkirk. Respiratory cancer deaths [standardized
mortality ratios (SMRs)] for the period 1976–1983. Scottish national rate used for standardization.

used by PH professionals to examine the distribution
of disease risk. Areas of the map with SMRs greater
than 2 or 3 (say) may be of concern. More formally,
tests can be carried out to assess whether risk excesses
are significant statistically (Ref 4, ch. 17 and Ref 5, ch.
5) Visual assessment is not adequate for this purpose.
Also note that the SMR is one estimate of relative risk,
and there are many other ways to estimate risk.

The Ecological and Atomistic Fallacy
Many mapping studies attempt to relate incidence
of disease in regions with some other measurable
explanatory variable relating to the etiology of the
disease, e.g., we might want to examine the relation
between the number of smokers in regions and the
incidence of respiratory cancer in the same regions.
This might be achieved by applying regression analysis
to the disease incidence and explanatory variable.
The relation between these variables is indirect in
that we only have access to the average value for an
area and not the individual level measures. Hence an
average relationship can only be measured. There is
no direct link between whether an individual smokes
and whether they develop lung cancer.

The ecological fallacy arises when such regional
average characteristics are ascribed to individuals

within the region concerned. Any region-based
analysis will suffer from this problem. It is known fact
that in some extreme cases the relation between the
covariate and the outcome is reversed when individ-
ual analysis is carried out. Hence, ecological analyses
are sometimes viewed with caution. Of course, at
the aggregate level the relation remains valid. The
atomistic fallacy occurs when analysis is based on indi-
viduals, and the variability of individuals’ response
to disease is not accounted for in inference at the
regional level. These, and other aggregation issues,
are further discussed in Refs 6–8, and 9.

Confounders and Deprivation Indices
All disease maps contain the influence of variables
affecting, or pertaining to, the local populations which
are not accounted for in standardized rates or control
diseases. We can try to allow for these effects in the
following two ways:

• Include as many known explanatory variables in
the expected rate or regression model to allow for
these effects. These variables are called known
confounders.

• Include the effect of unmeasured confounders via
the use of random effects.
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In the first case, the solution is to include in
the study as many known variables that affect the
outcome so that extra variation is explained. Of
course it may not be feasible to include all know con-
founders simply due to (realistic) study limitations.
To make allowance for unmeasured confounders
(whether known or unknown) it is possible to admit
random effects into any regression models. These are
additional unobserved variates that will soak up extra
variation of various kinds.

Often adverse disease incidence is known to
be related to a range of poverty-related explanatory
variables, e.g., unemployment, housing type, welfare
status, car ownership. That is, we expect there to be
measurable adverse risk in areas where these variates
indicate low income and poverty. These variables are
often available from national census. There has been
some effort to combine such variables in composite
measures known as deprivation indices.10 In North
America these are often termed urbanicity indices.
Deprivation indices are now routinely available from
government census data organizations and can be
incorporated directly into a disease map as a covariate
or as an offset term.

SOME SPATIAL STATISTICAL ISSUES

A fundamental feature of geo-referenced data avail-
able for analysis in PH applications is that it is usu-
ally discrete (either in the form of a point process
or counting process), and the cases of concern arise
from within a local human population which varies
in spatial density and in susceptibility to the disease
of interest. Hence any model or test procedure must
make allowance for this background (nuisance) pop-
ulation effect. The background population effect can
be allowed for in a variety of ways. For count data it
is commonplace to obtain expected rates for the dis-
ease of interest based on the age–sex structure of the
local population (see, e.g., Ref 11, ch. 3), and some
crude estimates of local relative risk are often com-
puted from the ratio of observed to expected counts
(e.g., standardized mortality /incidence ratios: SMRs).
In the following, we will focus on the modeling of
small-area count data.

Count Data
Figure 2 displays a typical count data example: con-
genital death counts for South Carolina counties for
the year 1990.

Standardized mortality ratio: congenital deaths

4 – 4 (1)
2 – 4 (8)
1 – 2 (27)
0 – 1 (10)

FIGURE 2 | South Carolina: congential deaths 1990 by county: standardized mortality ratio (SMR).
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A considerable literature has developed concern-
ing the analysis of count data in spatial epidemiology
(e.g., see reviews in Refs 2, 11, 12, and 13).

The usual model adopted for the analysis of
region counts {yi, i= 1, … , p} to be independent Pois-
son random variables with parameters {𝜆i, i=1, … ,
p}. Often the 𝜆is are assumed to be constant within
areas. Usually the expected count is modeled as

E
(
yi

)
= 𝜆i = ei𝜃i, i = 1, ...,p.

Here the model assumes that the background
expected rate (ei) is modified by the relative risk (𝜃i)
in a multiplicative fashion. The relative risk is the
fundamental modeling focus and most, if not all,
models for risk directly model this parameter. Note
that 𝜃i can lie on the positive real line, and can be
considered to have a null value of 1, when the disease
risk is simply an expression of the background effect
(ei). Values of 𝜃i < 1 can also arise. Also note that the
SIR/SMR is a simple (ML) estimator for 𝜃i under a
saturated Poisson data model.

We express this basic data model as

yi|ei, 𝜃i~Poiss
(
ei𝜃i

)
. (1)

This implies that conditional on {𝜃i} the counts
are independent Poisson random variables, and so
have a Poisson likelihood. Alternative forms of like-
lihood arise when the discrete outcome is observed in
finite population (binomial likelihood) or as a binary
variable (Bernoulli likelihood). In the former case then

yi|ni,pi~Bin
(
ni,pi

)
(2)

where ni is the finite population in the ith area and pi
is the unit probability of disease. In the latter case a
0/1 variable would be defined to have

yi|pi~Bern
(
pi

)
. (3)

Models for Relative Risk
Hierarchical models for risk can be now specified via
functions of relative risk, in the Poisson case, or unit
probability, in the binomial or Bernoulli case. For the
Poisson case a log link is usually assumed whereby

log
(
𝜃i

)
=
(
linear

)
predictor, (4)

whereas in the binomial or Bernoulli case a logit link is
often assumed. These links allow the predictor to take
on a variety of values over a wide negative and positive
range. Both these definitions with linear predictors
represent special cases of generalized linear models.

If the predictor includes random effects as well as
covariates, then these are special cases of generalized
linear mixed models. In general, then it can be specified
that

E
(
yi

)
= 𝜇i

g
(
𝜇i

)
= 𝜂i

𝜂i = xT
i 𝛽 + zT

i 𝛾

where xT
i 𝛽 is a linear predictor composed of xT

i , the
ith row of covariate design matrix x and 𝛽 is a param-
eter vector, and zT

i 𝛾 is a linear predictor consisting of
zT

i , the ith row of random effects and 𝛾 is a vector of
0/1 indicators. This specification is quite general and
assumes that the effects are additive and appear in lin-
ear combinations. For the Poisson example E(yi)= ei𝜃i
and g(𝜇i)= log(𝜇i)= log(ei)+ log(𝜃i) and

log
(
𝜃i

)
= xT

i 𝛽 + zT
i 𝛾,

whereas for the binomial example E(yi)= nipi and
usually a logit link is assumed: g−1

(
𝜇i∕ni

)
= pi =

exp(xT
i 𝛽+zT

i 𝛾)
1+exp(xT

i 𝛽+zT
i 𝛾)

. When a binary outcome is observed

then this simplifies to E(yi)= pi and logit
(
pi

)
= xT

i 𝛽 +
zT

i 𝛾.
A variety of hierarchical models arise from

particular specifications of xT
i 𝛽 + zT

i 𝛾. Note that
case-event data can be modeled by conditioning on
the case–control realization and by using the binary
labels (case/control) as the outcome (see, e.g., Ref
14, ch. 2). Hence, it is also possible to use the above
formulations for case-event outcomes also (see Section
on Models for Relative Risk) below.

SPECIAL CASES

Disease Mapping
In this area, the focus is on the processing of the
disease map to extract random noise and smooth
risk variation. Often applications in health services
research require the production of an ‘accurate’ map
of relative risks. Models for relative risk range from
simple SMRs to posterior expected estimates from
Bayesian models. In the count data situation, define
the model for the observed counts as

yi|ei, 𝜃i~Poisson
(
ei𝜃i

)
log 𝜃i = xT

i 𝛽 + zT
i 𝛾.

The simplest model assumes no linkages to
covariates or random terms and the ML estimator
of 𝜃i is the SMR, i.e., 𝜃i = yi∕ei. More often, and
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more generally, log 𝜃i is assumed to be equal to a
linear predictor involving covariates and regression
parameters (xT

i 𝛽). The simplest model here would
constitute a minimal model with

log 𝜃i = 𝛽0 (5)

or 𝜇i = ei exp
(
𝛽0

)
. (6)

This intercept-only model describes overall
(average) risk for all areas, and is of course not of
primary interest as any spatial structure in risk is not
modeled. In fact, if this model was true then there
would be no need to carry out further modeling.

A first more realistic extension to this model is
to consider random noise at the unit level (i), with
a random intercept model. Disease variation is often
considered to consist of random noise and so a simple
random effect model could be used whereby:

log 𝜃i = 𝛽0 + vi.

This model assigns noise completely to one
uncorrelated component at the unit level (vi). It is
convenient at this point to consider how this noise
is specified. As {vi} is a random effect then it is
required that its form be specified. In a non-Bayesian
setting the mean and variance for vi will usually be
specified. Normally a prior specification of E(vi)=0
with associated variance structure would be made.
In a Bayesian setting this would usually be a prior
distribution. A suitable choice could be

vi~N
(
0, 𝜏−1

v

)
where 𝜏v is the precision of the Gaussian distribution.
For a fully specified Bayesian hierarchical approach
then the model would be of the form:

yi|ei, 𝜃i~Poisson
(
ei𝜃i

)
(7)

log 𝜃i = 𝛽0 + vi,

𝛽0~N
(
0, 𝜏−1

0

)
vi~N

(
0, 𝜏−1

v

)
.

At this stage there is a hierarchy of condition-
ing defining the model: 𝜃i ← 𝛽0, vi; 𝛽0 ← 𝜏0; vi ← 𝜏v.
This can be specified via conditional distributions:
[yi|ei, 𝜃i], [𝛽0|𝜏0], [vi|𝜏v]. This hierarchical specification
forms the basis for extended model ingredients. This
model (7) can be described as a uncorrelated hetero-
geneity (UH) model. In the following we will assume
a Bayesian paradigm for the hierarchical modeling
described.

Within a model hierarchy a decision about the
truncation point for random variation must be made.
For example, should precisions (𝜏0, 𝜏v) have (hyper)
prior distributions or be fixed. For random effects it
is generally recommended that precisions should be
estimable and so should be given a prior distribution.
For fixed effects, such as 𝛽0, it is not essential to pro-
vide a prior distribution for precisions (e.g., 𝜏0). How-
ever, in mixed effect models, where there are random
components included then there can be a need to esti-
mate the precision of fixed effects. In mixed models it
is recommended that all precisions for Gaussian distri-
butions have hyper-prior specifications. Hence model
(7) with added hyper-prior distributions could be

yi|ei, 𝜃i~Poisson
(
ei𝜃i

)
(8)

log 𝜃i = 𝛽0 + vi,

𝛽0~N
(
0, 𝜏−1

0

)
vi~N

(
0, 𝜏−1

v

)
(9)

𝜏∗~Ga
(
a,b

)
where a gamma distribution with mean a/b is assumed.
Usually a non-informative choice for these parameters
is made such as (0.001,0.001) or (1,0.00001).

The UH model only ascribed random variation
to uncorrelated noise. It is possible to add compo-
nents to this specification to allow for other spatial
effects. First, it may be the overall variation in risk
is slowly varying over the spatial region of inter-
est (Ref 14, ch. 6, Figure 6.8). In that case it is
possible to make a simple extension by adding a
regression on the coordinates to the centroids of the
study areas. For example, log 𝜃i = 𝛽0 + 𝛽1xi + 𝛽2yi + vi,
where (xi, yi) are the cartesian coordinates of these
areas, with 𝛽∗~N

(
0, 𝜏−1

∗
)
. This could be termed a spa-

tial trend model.
More commonly in spatial epidemiology, a ran-

dom effect addressing prior spatial correlation in the
data is included with the UH effect. This is often
included to allow for ‘clustering’ of risk via spatial
smoothing. The correlated effect can be termed a
correlated heterogeneity (CH) effect, and this model
assigns noise to two components (UH and CH).
Both components are usually fitted to capture all the
noise components thought to be present. This is often
termed the Besag, York and Mollie (BYM)15 or con-
volution model.

The logged risk model becomes:

log
(
𝜃i

)
= 𝛽0 + vi + ui.

To be able to estimate these components,
prior distributions are assumed for each component.
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Usually these consist of independent uncorrelated
zero mean normal distribution for the UH effect:

vi~N
(
0, 𝜏−1

v

)
,

where 𝜏v is a precision parameter and a spatial
correlation prior distribution for the CH component.
This could be chosen in a variety of ways. Commonly,
a Markov random field (MRF) prior distribution
is assumed for {ui}. The intrinsic singular Gaussian
distribution15–18 is used where the conditional mean
of the region effect is based only on a neighborhood
of the region:

ui|......]~N
(
u𝛿i
, 𝜏−1

u ∕n𝛿i

)
where 𝛿i is a neighborhood of the ith area, and n𝛿i

is the
number of regions in the ith neighborhood, u𝛿i

is the
mean of the neighboring uj values (where j∈ 𝛿i) and
𝜏u is a precision parameter which controls the degree
of smoothing. This is sometimes known as an ICAR
prior distribution. An alternative to this specification
is to assume a fully parameterized covariance and a
multivariate normal distribution for CH:

u~Np (0,Σ)

where the elements of Σ are 𝜎ij = cov(ui, uj). These
covariance elements can be parameterized with a
distance-based form such as 𝜎ij = 𝜏 exp

(
−𝛼d𝜓ij

)
. Here,

dij is the distance between the ith and jth observations,
𝛼 and 𝜓 are distance and shape parameters, and at
zero distance the instantaneous variance is 𝜏. This
is more heavily parameterized than the MRF model
above and the model also requires the inversion of
a p× p covariance matrix. This of course allows for
more detailed covariance modeling.

For the ICAR convolution model the full hier-
archical specification, for a Poisson data model,
would be:

yi|ei, 𝜃i~Poisson
(
ei𝜃i

)
(10)

log 𝜃i = 𝛽0 + vi + ui,

𝛽0~N
(
0, 𝜏−1

0

)
vi~N

(
0, 𝜏−1

v

)
ui| {uj

}
−i

~N
(
u𝛿i
, 𝜏−1

u ∕n𝛿i

)
𝜏∗~Ga

(
a,b

)
.

In a full Bayesian analysis, all parameters
(𝛽, u, v, 𝜏* … ) would be assigned prior distributions,
and usually posterior sampling of these parameters
via Markov chain Monte Carlo (McMC) algorithms
would be chosen. A fast alternative would be to use

Integrated Nested Laplace Approximation software
(INLA:www.R-inla.org) which provides numerical
approximations to posterior distributions and has
BYM convolution models as a built-in feature (see
Section on Computation). The BYM/convolution
model has been evaluated via extensive simulation
and found to be relatively robust in risk estima-
tion and cluster estimation performance even under
mis-specified models.19–21

For case-event data, point process models must
be considered initially. A heterogeneous Poisson pro-
cess model could be considered for p case events {si}
i= 1,..., p. It is possible to extend such a model to deal
with random effects also. However, when a control
disease is also available, then it is possible to con-
sider a simpler conditional logistic analysis. Define the
joint realization of p cases and q controls as i=1,..., p
for the cases and i= p+1, . . . ., p+q for the controls.
Assume that the first-order intensity of the cases is
𝜆(s, 𝜃) = 𝜌𝜆0(s, 𝜃)𝜆1(s, 𝜃) and of the controls 𝜆0(s, 𝜃).
Define the binary indicator variable yi as follows:

yi =

{
1 if si is a case
0 otherwise

then the conditional probability of a case at si is just

𝜌𝜆1

(
si, 𝜃

)
1 + 𝜌𝜆1

(
si, 𝜃

) .
Hence, the likelihood of the realization is a

logistic likelihood22 specified by

L
(
𝜃| {si

})
=

p+q∏
i=1

[
𝜌𝜆1

(
si, 𝜃

)]yi

1 + 𝜌𝜆1

(
si, 𝜃

) . (11)

A suitable specification for the relative risk
𝜆1(si, 𝜃) could be log 𝜆1

(
si, 𝜃

)
= xT

i 𝛽 + vi + ui, where
any covariates would have to be available at all case
and control locations. Note that a model without
covariates only requires random effect estimates
at locations. Specifying suitable prior distributions
for such a model is not difficult and, for example,
first-order neighborhoods of points can be obtained
from tesselation information,23,18,24 and so MRF
prior distributions can be specified. Alternative
semi-parametric models have been suggested by
Kelsall and Diggle.25

Disease Clustering
In this area, the focus is not on reduction of noise, per
se, but the assessment of the clustering tendency of the
map and in particular the assessment of which areas
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of a map display clustering. Here, clustering could be
around a known putative source of hazard (focused
clustering) or have no known locations of clustering
(non-focused clustering).

It is also possible to consider hierarchical mod-
eling of clusters. In general, the model formulation
may not differ greatly from that of relative risk esti-
mation, depending largely on the definition of clusters
and clustering. Here we only consider focused cluster-
ing as it relates closely to standard mixed regression
models. Non-focused clustering is discussed in detail
in Ref 14, ch. 6.

Focused Clustering
Focused clustering usually assumes that some form
of distance decrease in risk happens around a fixed
known point or points. For example, the count data
model can be defined as

yi~Poisson
(
ei𝜃i

)
log 𝜃i = log

(
1 + exp

{
−𝛼di

})
+ xT

i 𝛽 + zT
i 𝛾,

where di is a distance measured at the small area from
the focus point (such as, a chimney, mobile phone
mast, or waste dump site). Here the extra covariates
appear in xT

i , while the zT
i is the ith row of a matrix of

random effects and 𝛾 is a 0/1 vector. In this case focus is
on inference concerning 𝛼, as this defined the distance
relation. Within xT

i there could also be directional
terms such as cos(𝜙) and sin(𝜙), where 𝜙 is the angle
between the area (centroid) and the focus point. This
can be used to detect any directional concentration of
risk (which could be important particularly if an air
pollution risk is possible).

For case events, the case-event locations are
often assumed to follow a heterogeneous Poisson
process with first-order intensity 𝜆(s). Denote this as
{si} ~ PP(𝜆(s)). If a control disease is available and the
conditional logistic likelihood (11) is assumed then the
intensity can be parameterized as:

log 𝜆1

(
si, 𝜃

)
= log

(
1 + exp

{
−𝛼di

})
+ xT

i 𝛽 + zT
i 𝛾,

where di is the distance from any case or control event
to the focus point. Directional effects can be included
here also as for count data. When fixed effects are
included only with no covariates, then a frequentist
approach would allow the estimation of 𝛼 via max-
imum likelihood. Equally, if a Bayesian approach is
assumed then all parameters would have prior distri-
butions and the resulting posterior distribution would
usually be sampled. A recent summary of this area of
Bayesian modeling appears in Ref 14, ch. 8.

Computation
Full Bayesian analysis of spatial hierarchical models
such as (7), (8), and (10) is implemented on WinBUGS
(available free at http://www.mrc-bsu.cam.ac.uk/
bugs), OpenBUGS (www.openbugs.net), and INLA
(www.R-INLA.org). Many WinBUGS or OpenBUGS
programs are available to use at: http://academic
departments.musc.edu/phs/research/lawson/data.htm.

Also the GeoBUGS manual26 contains a wide
variety of examples with different prior distribu-
tional assumptions. Appendix D of Lawson14 also has
examples of INLA code for Bayesian spatial models.
Discussion of the use of INLA for disease mapping can
be found in Refs 27–30.

Ecological Analysis
In this area, the relation between disease incidence and
explanatory variables is the focus, and this is usually
carried out at an aggregate level, such as with counts
in small areas. Many issues of bias and misclassifica-
tion error can arise with ecological data and the inter-
ested reader is referred to Wakefield6,9,31,32 for further
insights.

Two important areas of concern are related to
scale aggregation issues, modifiable areal unit problem
(MAUP) and misaligned data problem (MIDP). The
MAUP concerns the scalability of models and that
whether, at different spatial scales, a model is valid.
In general, this is unlikely to be the case as far as
covariance structure is concerned as this would lead
to fractal covariances which are not found commonly.
However, the labeling of scales of relevance of models
is important and the extent to which a model can be
scaled is relevant in many applications. A related but
different issue is how to use different scales of data
within one analysis, i.e., should individual level data
be used in preference to aggregated data or can they
be combined. This is the focus of current research.

The MIDP is related to the last issue, but
specifically addresses the issue of combining data from
different spatial scales to provide analysis at one level.
For example, health outcomes (disease incidence etc.)
may be observed within census tracts and we have
available pollution measurements at monitoring sites
around the study area. To make inferences about the
health outcomes we want to use the pollution data
relevant to the census tracts. One simple solution
would be to block Krige the pollution data to provide
block estimates for each of the tracts (see, e.g., Refs
33 and 13, ch. 6). This would ignore the error in the
interpolation of the pollution data of course and a
better approach is to consider a model where the true
exposure is modeled within the health model but the
pollution model is jointly estimated.
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SMR 1968

1.5 – 2   (4)
1 – 1.5  (25)
0.5 – 1  (45)
0 – 0.5  (14)

SMR 1983

1.5 – 2 (2)
1 – 1.5 (32)
0.5 – 1 (50)
0 – 0.5 (4)

SMR 1977

1.5 – 2  (1)
1 – 1.5 (29)
0.5 – 1 (52)
0 – 0.5 (6)

SMR 1988
1.5 – 2  (5)
1 – 1.5 (36)
0.5 – 1 (41)
0 – 0.5 (6)

FIGURE 3 | Ohio county map: respiratory cancer standardized mortality ratios (SMRs) for four selected years: 1968, 1977, 1983, and 1988.
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[0.76,0.93] (14)

[0.93,1.09] (16)

[1.09,1.26]  (8)

[1.26,1.43]  (4)

[1.43,1.6]    (3)

FIGURE 4 | Relative risk posterior mean estimates from the BYM convolution model with a poverty covariate included.

The model often assumed for count data is of the
form

yi~Poisson
(
ei𝜃i

)
log 𝜃i = xT

i 𝛽 + zT
i 𝛾.

Assume we observe count data (yi) and also
observe measurements {x(sj)} made at q sites.
Assume that the measures have mean E(x(sj))=𝜇(sj),
and they are multivariate normal with covariance
cov(x(si), x(sj))= 𝜎xij. Also Σ is the covariance matrix
with ijth element 𝜎xij. For a block, the mean is defined
as 𝜇Bi

= |Bi|−1
i 𝜇

(
sj

)
du, where Bi denotes the ith area,

and an estimate is 𝜇Bi
= |Bi|−1

i 𝜇
(
sj

)
du. We could

assume in this case:{
yi

}
ithPoisson

(
ei𝜃i

)
log 𝜃i = 𝛽𝜇Bi

+ zT
i 𝛾,

and jointly with{
x
(
sj

)}
~Nq

(
𝜇
(
sj

)
,Σ

)
,

𝜇Bi
can be estimated and the associated error can

be accounted for. Similar considerations can apply to
case-event data.

Space-Time Modeling
The extension of mapping models to space time is
straightforward in the case of counts within areas
within time periods. Figure 3 displays sequences of
maps of respiratory cancer for 4 year periods in the
counties of the US State of Ohio. Space-time variation
in risk is apparent from the variation from year to year
for given counties.

For example, yearly counts of disease within
small areas can be handled relatively straightfor-
wardly. In this area, the focus is the construction of
methods which, usually, examine the spatio-temporal
variation of disease. A typical count data model (for
counts yij in the ith region and jth time period)
might be

yij~Poisson
(
eij𝜃ij

)
log 𝜃ij = 𝛼 + (covariates) + uT

i 𝛾 + wT
j 𝜉 + zij

where uT
i 𝛾 is a sum of spatial random components (𝛾

is a unit vector), wT
j 𝜉 is a sum of temporal effects (𝜉 is

also a unit vector), and zij is a space–time interaction
effect. This formulation can lead to a rich variety of
models depending on the definition of the structure
of the components. Knorr-Held34 discusses various
possibilities in the Bayesian context.
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[0.0,0.87]    (23)

[0.87,1.73]  (17)

[1.73,2.6]     (5)

[2.6,3.47]     (0)

[3.47,4.33]   (1)

FIGURE 5 | Relative risk estimates from the uncorrelated heterogeneity (UH) model with no poverty covariate.

CASE STUDY EXAMPLE

The county level congenital death data for 1990 for
South Carolina will be the focus of this exercise
in application of hierarchical Bayesian models to
small-area health data (see Figure 2). In this example,
we have the count of deaths and expected rates
(computed from the state wide rate for 1990). In
addition we have a potential explanatory covariate
based on the US census: percentage population in
the county below the official poverty income level.
We have considered four different models for these
data, involving combinations of random effects and
fixed effects (intercept and poverty covariate). The
models are

log
(
𝜃i

)
= 𝛽0 + vi (12)

log
(
𝜃i

)
= 𝛽0 + 𝛽1xi + vi (13)

log
(
𝜃i

)
= 𝛽0 + vi + ui (14)

log
(
𝜃i

)
= 𝛽0 + 𝛽1xi + vi + ui (15)

where vi has a zero mean Gaussian prior distribution
and ui has an ICAR prior distribution, and the regres-
sion parameters also have zero mean Gaussian prior
distributions. The precisions have non-informative
SD-uniform prior distributions.35

Fitting of models 1–4 using posterior sampling
on WinBUGS led to the following results. We exam-
ined the deviance information criterion (DIC36) to
assist in the evaluation of the merits of each model. For
these data the DICs are not greatly different and cer-
tainly cannot lead to a clear choice. The range of DIC
is 171.1 (model 1) to 172.1 (model 2), with the other
models on 171.9. The lowest DIC is for the random
intercept model (model 1), but the DIC differences are
small. The pD (effective number of parameters) can
be used as a secondary criterion for parsimony. Based
on this model 1 is most parsimonious. This suggests
that there is little residual spatial structure in these
data after removal of random noise, and that a UH
model is adequate to describe the variation. To demon-
strate the resulting posterior estimates of risk Figures 4
and 5 display the 𝜃i estimates across the 46 counties
of SC under the BYM model with poverty covariate
(Figure 4) and the simpler UH model (Figure 5). There
is little difference between these estimated risk maps,
except that the UH model shows more variability in
risk.

CONCLUSIONS
In this review, we have attempted to outline the
main features of hierarchical modeling in the context
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of spatial epidemiology. This has inevitably been a
limited review as there exists a wide ranging of models
now developed for specialist area with the subject.
However, it is hoped that this overview will provide

enough insight into the basic ideas and methods in the
area to allow for easy application of these methods for
those unfamiliar with the area.

REFERENCES
1. Bernardinelli L, Clayton DG, Pascutto C, Monto-

moli C, Ghislandi M, Songini M. Bayesian analysis of
space-time variation in disease risk. Stat Med 1995,
14:2433–2443.

2. Lawson AB. Statistical Methods in Spatial Epidemiol-
ogy. 2nd ed. New York: John Wiley & Sons; 2006.

3. Fleiss JL, Levin B, Paik MC. The Standardization of
Rates, in Statistical Methods for Rates and Proportions.
3rd ed. New York: John Wiley & Sons; 2004.

4. Elliott P, Martuzzi M, Shaddick G. Spatial statistical
methods in environmental epidemiology: a critique. Stat
Methods Med Res 1995, 4:137–159.

5. Lawson AB. Statistical Methods in Spatial Epidemiol-
ogy. New York: John Wiley & Sons; 2001.

6. Wakefield J. A critique of statistical aspects of ecological
studies in spatial epidemiology. Environ Ecol Stat 2004,
11:31–54.

7. Salway R, Wakefield J. Sources of bias in ecological
studies of non-rare events. Environ Ecol Stat 2005,
12:321–347.

8. Haneuse S, Wakefield J. Ecological inference incorporat-
ing spatial dependence. In: King G, Rosen O, Tanner M,
eds. Ecological Inference: New Methodological Strate-
gies, Chapter 12. Cambridge University Press; 2004,
266–301.

9. Wakefield J, Haneuse S, Dobra A, Teeple E. Bayes
computation for ecological inference. Stat Med 2011,
30:1381–1396.

10. Carstairs V. Small area analysis and health service
research. Community Med 1981, 3:131–139.

11. Elliott P, Wakefield JC, Best NG, Briggs DJ, eds. Spa-
tial Epidemiology: Methods and Applications. London:
Oxford University Press; 2000.

12. Lawson AB, Böhning D, Lessafre E, Biggeri A, Viel JF,
Bertollini R, eds. Disease Mapping and Risk Assessment
for Public Health. Chichester: John Wiley & Sons;
1999.

13. Banerjee S, Carlin BP, Gelfand AE. Hierarchical Mod-
eling and Analysis for Spatial Data. London: Chapman
and Hall/CRC Press; 2004.

14. Lawson AB. Bayesian Disease Mapping: Hierarchical
Modeling in Spatial Epidemiology. 2nd ed. New York:
CRC Press; 2013.

15. Besag J, York J, Mollié A. Bayesian image restoration
with two applications in spatial statistics. Ann Inst Stat
Math 1991, 43:1–59.

16. Kunsch H. Intrinsic autoregressions and related mod-
els on the two-dimensional lattice. Biometrika 1987,
74:517–524.

17. Rue H, Held L. Gaussian Markov Random Fields:
Theory and Applications. New York: Chap-
man&Hall/CRC; 2005.

18. Rue H, Martino S, Chopin N. Approximate Bayesian
inference for latent gaussian models by using integrated
nested laplace approximations. J R Stat Soc B 2009,
71:319–392.

19. Lawson AB, Biggeri A, Boehning D, Lesaffre E, Viel
J-F, Clark A, Schlattmann P, Divino F. Disease map-
ping models: an empirical evaluation. Stat Med 2000,
19:2217–2242. Special issue: Disease Mapping with
emphasis on evaluation of methods.

20. Best N, Richardson S, Thomson A. A comparison
of Bayesian spatial models for disease mapping. Stat
Methods Med Res 2005, 14:35–59.

21. Rotejanaprasert C. Evaluation of cluster recovery for
small area relative risk models. Stat Methods Med Res
to appear. doi: 10.1177/09622802145-27382.

22. Diggle P. Point process modellng in environmental
epidemiology. In: Barnett V, Turkman K, eds. Statistics
in the Environment SPRUCE I. New York: John Wiley
& Sons; 1993.

23. Baddeley A, Turner R. Spatstat: an r package for
anayzing spatial point patterns. J Stat Softw 2003,
12:1–42.

24. Lawson AB. Bayesian point event modeling in spatial
and environmental epidemiology: a review. Stat Meth-
ods Med Res 2012, 21:509–529.

25. Kelsall J, Diggle P. Spatial variation in risk of disease:
a nonparametric binary regression approach. Appl Stat
1998, 47:559–573.

26. Thomas, A, Best N, Lunn D, Arnold R Spiegelhal-
ter D. Geobugs User Manual v 1.2. 2004. Available
at: www.mrc-bsu.cam.ac.uk/bugs. (Accessed 2 January,
2014).

27. Schrodle B, Held L, Rieber A, Danuser J. Using inte-
grated nested laplace approximations for the evalua-
tion of veterinary surveillance data from Switzerland:
a case-study. Appl Stat 2011, 60:261–279.

28. Schrodle B, Held L. Spatio-temporal disease mapping
using inla. Environmetrics 2011b, 22:725–734.

29. Schrodle B, Held L. A primer on disease mapping and
ecological regression using inla. Comput Stat 2011a,
26:241–258.

416 © 2014 Wiley Per iodica ls, Inc. Volume 6, November/December 2014

http://www.mrc-bsu.cam.ac.uk/bugs


WIREs Computational Statistics Hierarchical modeling in spatial epidemiology

30. Blangiardo M, Cameletti M, Baio G, Rue H. Spatial
and spatio-temporal models with r-inla. Spat Spat-Temp
Epidemiol 2013, 4:33–49.

31. Wakefield J, Shaddick G. Health-exposure model-
ing and the ecological fallacy. Biostatistics 2006,
7:438–455.

32. Gustafson P. Measurement Error and Misclassification
in Statistics and Epidemiology. London: Chapman&
Hall; 2004.

33. Schabenberger O, Gotway C. Statistical Methods for
Spatial Data Analysis. London: Chapman&Hall; 2004.

34. Knorr-Held L. Bayesian modelling of inseparable
space-time variation in disease risk. Stat Med 2000,
19:2555–2567.

35. Gelman A. Prior distributions for variance parameters
in hierarchical models. Bayesian Anal 2006, 1:515–533.

36. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A.
Bayesian deviance, the effective number of parameters
and the comparison of arbitrarily complex models. J R
Stat Soc B 2002, 64:583–640.

Volume 6, November/December 2014 © 2014 Wiley Per iodica ls, Inc. 417


