TOXOSOURCES: Toxoplasma gondii sources quantified

Start: 1 January 2020
Duration: 2.5 Years
Domain: Foodborne Zoonoses
Key Words: parasitology, source attribution, transmission, Toxoplasma gondii, toxoplasmosis
Contact: Pikka Jokelainen (SSI)


TOXOSOURCES is a unique international collaboration with optimal complementary expertise on the zoonotic parasite Toxoplasma gondii at the interface of humans, animals, food, and environment.

The TOXOSOURCES project will address the research question – What are the relative contributions of the different sources of T. gondii infection? – using several multidisciplinary approaches and novel and improved methods to yield the most robust estimates possible that can inform risk management and policy makers.

The main outcomes of TOXOSOURCES are quantitative estimates of the contribution of the main sources and transmission routes of T. gondii infection based on improved source attribution models, new data filling the key knowledge gap about the role of increasingly popular but unstudied ready-to-eat (RTE) fresh produce, a novel serological method that aims to specifically detect infections caused by oocysts, and a novel typing method to improve preparedness to detect introduction of atypical T. gondii strains by import and to trace the infection sources in outbreaks.

All the results are integrated to contribute to developing efficient interventions at national, regional, European and global levels. TOXOSOURCES will have immediate and long-term societal impact, and has potential, ability and ambition to advance science.


Álvarez García G., Davidson R., Jokelainen P., Klevar S., Spano F., Seeber F. (2021). Identification of Oocyst-Driven Toxoplasma gondii Infections in Humans and Animals through Stage-Specific Serology—Current Status and Future Perspectives. Microorganisms. 9(11):2346. DOI:

González-Barrio D., Huertas-López A., Diezma-Díaz C., Ferre I., Cerón J. J., Ortega-Mora L. M. Álvarez-García G. (2021) Changes in serum biomarkers of inflammation in bovine besnoitiosis. Parasites Vectors 14488. DOI:

González-Barrio D., Diezma-Díaz C., Gutiérrez-Expósito D., Tabanera E., Jiménez-Meléndez A., Pizarro M., González-Huecas M., Ferre I., Ortega-Mora L. M., Álvarez-García G. (2021) Identification of molecular biomarkers associated with disease progression in the testis of bulls infected with Besnoitia besnoitiVet Res 52,106 . DOI:

González-Barrio D., Köster P.C., Habela M.A., Martín-Pérez M., Fernández-García J.L., Balseiro A., Barral M., Nájera F., Figueiredo A.M., Palacios M.J., Mateo M., Carmena D., Álvarez-García G., Calero-Bernal R. (2021). Molecular survey of Besnoitia spp. (Apicomplexa) in faeces from European wild mesocarnivores in Spain. Transboundary and Emerging Diseases683156– 3166.DOI:

Huertas-López A., Sukhumavasi W., Álvarez-García G., Martínez-Subiela S., Cano-Terriza D., Almería S., Dubey J.P., García-Bocanegra I., Cerón J.J., Martínez-Carrasco, C. (2021). Seroprevalence of Toxoplasma gondii in outdoor dogs and cats in Bangkok, Thailand. Parasitology, 148(7), 843-849. DOI: 10.1017/S0031182021000421

Huertas-López A., Martínez-Subiela S., Cerón J.J., Vázquez-Calvo Á., Pazmiño-Bonilla E.D., López-Ureña N.M., Martínez-Carrasco C., Álvarez-García G. (2021) Development and validation of a time-resolved fluorescence immunoassay for the detection of anti-Toxoplasma gondii antibodies in goats. Veterinary Parasitology 293, 109432. DOI:

Marstrand, J., Kurtzhals, JAL., Fuchs, HJ., Nielsen, HV., Jokelainen, P. (2021). The disease burden of ocular toxoplasmosis in Denmark in 2019: Estimates based on laboratory testing of ocular samples and on publicly available register data. Parasite Epidemiology and Control. 15, e00229. DOI:

Olsen, A., Denwood, M., Houe, H., Birk Jensen, T., Nielsen, HV. (2021). A longitudinal study of Toxoplasmagondii seroconversion on four large Danish sow farms. Veterinary Parasitology.  295, 109460. DOI:

Berg, RPKD., Stensvold, CR., Jokelainen, P., Grønlund, AK., Nielsen, HV., Kutz, S., Kapel CMO. (2021). Zoonotic pathogens in wild muskoxen (Ovibos moschatus) and domestic sheep (Ovis aries) from Greenland. Veterinary Medicine and Science. 1-14. DOI:

Stollberg, K.C., Schares, G., Mayer-Scholl, A., Hrushetska, I., Diescher, S., Johne, A., Richter, M.H., Bier, N.S. (2021). Comparison of Direct and Indirect Toxoplasma gondii Detection and Genotyping in Game:Relationship and Challenges. Microorganisms. 9, 1663. DOI:

Fernández-Escobar, M., Calero-Bernal, R., Regidor-Cerrillo, J., Vallejo, R., Benavides, J., Collantes-Fernández, E., Ortega-Mora, LM. (2021). In vivo and in vitro models show unexpected degrees of virulence among Toxoplasma gondii type II and III isolates from sheep. Veterinary Research. 52:82. DOI:‑021‑00953‑7

Schares, G., Joeres, M., Rachel, F., Tuschy, M., Czirják, GÁ., Maksimov, P., Conraths, FJ., Wachter, B. (2021). Molecular analysis suggests that Namibian cheetahs (Acinonyx jubatus) are definitive hosts of a so far undescribed Besnoitia species. Parasites and Vectors. 14, 201. DOI:

Fabian, B. T., Lepenies, B., Schares, G., Dubey, J. P., Spano, F., Seeber, F. (2021). Expanding the Known Repertoire of C-Type Lectin Receptors Binding to Toxoplasma gondii Oocysts Using a Modified High-Resolution Immunofluorescence Assay. mSphere. 6:e01341-20. DOI:

Verkola, M., Järvelä, T., Järvinen, A., Jokelainen, P., Virtala, A.-M., Kinnunen, P. M., Heikinheimo, A. (2021).
Infection prevention and control practices of ambulatory veterinarians: A questionnaire study in Finland. Veterinary Medicine and Science. p1-12. DOI:

Nedişan, M. E., Györke, A., Ştefănuţ, C. L., Kalmár, Z., Friss, Z., Blaga, R., Blaizot, A., Toma-Naic, A., Mircean, V.; Schares, G., Djurković-Djaković, O., Klun, I., Villena, I., Cozma, V. (2021). Experimental Infection with Toxoplasma gondii in Broiler Chickens (Gallus Domesticus): Seroconversion, Tissue Cyst Distribution, and Prophylaxis. Parasitology Research. 120, pp 593- 603. DOI:

Schares, G., Globokar Vrhovec, M., Tuschy, M., Joeres, M., Bärwald, A., Koudela, B., Dubey, J. P., Maksimov, P., Conraths, F. J. (2021). A real-time quantitative polymerase chain reaction for the specific detection of Hammondia hammondi and its differentiation from Toxoplasma gondiiParasites and Vectors. 15, 74. DOI:

Slana, I., Bier, N., Bartosova, B., Marucci, G.,Possenti, P., Mayer-Scholl, A., Jokelainen, P., Lalle, M. (2021). Molecular Methods for the Detection of Toxoplasma gondii Oocysts in Fresh Produce: An Extensive Review. Microorganisms. 9 (1), 167. DOI:

Fernández-Escobar, M., Calero-Bernal, R., Regidor-Cerrillo, J., Vallejo, R., Benavides, J., Collantes-Fernández, E., Ortega-Mora, LM. (2020). Isolation, Genotyping, and Mouse Virulence Characterization of Toxoplasma gondii From Free Ranging Iberian Pigs. Frontiers in Veterinary Science. 7:604782. DOI:

Klein, S., Stern, D., Seeber, F. (2020). Expression of in vivo biotinylated recombinant antigens SAG1 and SAG2A from Toxoplasma gondii for improved seroepidemiological bead-based multiplex assays. BMC Biotechnology. 20, 53. DOI:

Fernández-Escobar, M., Calero-Bernal, R., Benavides, J., Regidor-Cerrillo, J., Guerrero-Molina, M. C., Gutiérrez-Expósito, D., Collantes-Fernández, E., Ortega-Mora, L. M. (2020) Isolation and genetic characterization of Toxoplasma gondii in Spanish sheep flocks. Parasites and Vectors. DOI:

Fabian, B. T., Hedar, F., Koethe, M., Bangoura, B., Maksimov, P., Conraths, F. J., Villena, I., Aubert, D., Seeber, F., Schares, G. (2020). Fluorescent bead-based serological detection of Toxoplasma gondii infection in chickens. Parasites and Vectors. DOI:

OpenAIRE Publications